BILLIONAIRES

Let us first import the database.


In [1]:
import pandas as pd

In [32]:
import matplotlib.pyplot as plt

In [33]:
%matplotlib inline

In [34]:
df = pd.read_excel("richpeople.xlsx")

In [35]:
rich = df[df['year'] == 2014] #Getting only the latest list.

In [36]:
rich.head(5)


Out[36]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... relationshiptocompany foundingdate gdpcurrentus sourceofwealth notes notes2 source source_2 source_3 source_4
1 2014 A. Jerrold Perenchio 663 United States USA 2.6 self-made executive male 83.0 ... former chairman and CEO 1955.0 NaN television, Univision represented Marlon Brando and Elizabeth Taylor NaN http://en.wikipedia.org/wiki/Jerry_Perenchio http://www.forbes.com/profile/a-jerrold-perenc... COLUMN ONE; A Hollywood Player Who Owns the Ga... NaN
5 2014 Abdulla Al Futtaim 687 United Arab Emirates ARE 2.5 inherited inherited male NaN ... relation 1930.0 NaN auto dealers, investments company split between him and cousin in 2000 NaN http://en.wikipedia.org/wiki/Al-Futtaim_Group http://www.al-futtaim.ae/content/groupProfile.asp NaN NaN
6 2014 Abdulla bin Ahmad Al Ghurair 305 United Arab Emirates ARE 4.8 inherited inherited male NaN ... relation 1960.0 NaN diversified inherited from father NaN http://en.wikipedia.org/wiki/Al-Ghurair_Group http://www.alghurair.com/about-us/our-history NaN NaN
8 2014 Abdullah Al Rajhi 731 Saudi Arabia SAU 2.4 self-made self-made finance male NaN ... founder 1957.0 NaN banking NaN NaN http://en.wikipedia.org/wiki/Al-Rajhi_Bank http://www.alrajhibank.com.sa/ar/investor-rela... http://www.alrajhibank.com.sa/ar/about-us/page... NaN
9 2014 Abdulsamad Rabiu 1372 Nigeria NGA 1.2 self-made founder non-finance male 54.0 ... founder 1988.0 NaN sugar, flour, cement NaN NaN http://www.forbes.com/profile/abdulsamad-rabiu/ http://www.bloomberg.com/research/stocks/priva... NaN NaN

5 rows × 30 columns


In [37]:
rich.columns


Out[37]:
Index(['year', 'name', 'rank', 'citizenship', 'countrycode',
       'networthusbillion', 'selfmade', 'typeofwealth', 'gender', 'age',
       'industry', 'IndustryAggregates', 'region', 'north',
       'politicalconnection', 'founder', 'generationofinheritance', 'sector',
       'company', 'companytype', 'relationshiptocompany', 'foundingdate',
       'gdpcurrentus', 'sourceofwealth', 'notes', 'notes2', 'source',
       'source_2', 'source_3', 'source_4'],
      dtype='object')

What country are most billionaires from? For the top ones, how many billionaires per billion people?


In [38]:
numberofbillionaires=rich['countrycode'].value_counts() #Clearly, Americans lead. 
numberofbillionaires.head(10)


Out[38]:
USA    499
CHN    152
RUS    111
DEU     85
BRA     65
IND     56
GBR     47
HKG     45
FRA     43
ITA     35
Name: countrycode, dtype: int64

In [39]:
numberofbillionairesperbillionpeople=numberofbillionaires/1000000000
numberofbillionairesperbillionpeople.head(6)


Out[39]:
USA    4.990000e-07
CHN    1.520000e-07
RUS    1.110000e-07
DEU    8.500000e-08
BRA    6.500000e-08
IND    5.600000e-08
Name: countrycode, dtype: float64

Who are the top 10 richest billionaires?


In [40]:
sortedrich=rich.sort_values(by='networthusbillion',ascending=False)
sortedrich.head(10)


Out[40]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... relationshiptocompany foundingdate gdpcurrentus sourceofwealth notes notes2 source source_2 source_3 source_4
284 2014 Bill Gates 1 United States USA 76.0 self-made founder non-finance male 58.0 ... founder 1975.0 NaN Microsoft NaN NaN http://www.forbes.com/profile/bill-gates/ NaN NaN NaN
348 2014 Carlos Slim Helu 2 Mexico MEX 72.0 self-made privatized and resources male 74.0 ... founder 1990.0 NaN telecom NaN NaN http://www.ozy.com/provocateurs/carlos-slims-w... NaN NaN NaN
124 2014 Amancio Ortega 3 Spain ESP 64.0 self-made founder non-finance male 77.0 ... founder 1975.0 NaN retail NaN NaN http://www.forbes.com/profile/amancio-ortega/ NaN NaN NaN
2491 2014 Warren Buffett 4 United States USA 58.2 self-made founder non-finance male 83.0 ... founder 1839.0 NaN Berkshire Hathaway NaN NaN http://www.forbes.com/lists/2009/10/billionair... http://www.forbes.com/companies/berkshire-hath... NaN NaN
1377 2014 Larry Ellison 5 United States USA 48.0 self-made founder non-finance male 69.0 ... founder 1977.0 NaN Oracle NaN NaN http://www.forbes.com/profile/larry-ellison/ http://www.businessinsider.com/how-larry-ellis... NaN NaN
509 2014 David Koch 6 United States USA 40.0 inherited inherited male 73.0 ... relation 1940.0 NaN diversified inherited from father NaN http://www.kochind.com/About_Koch/History_Time... NaN NaN NaN
381 2014 Charles Koch 6 United States USA 40.0 inherited inherited male 78.0 ... relation 1940.0 NaN diversified inherited from father NaN http://www.kochind.com/About_Koch/History_Time... NaN NaN NaN
2185 2014 Sheldon Adelson 8 United States USA 38.0 self-made self-made finance male 80.0 ... founder 1952.0 NaN casinos NaN NaN http://www.forbes.com/profile/sheldon-adelson/ http://lasvegassun.com/news/1996/nov/26/rat-pa... NaN NaN
429 2014 Christy Walton 9 United States USA 36.7 inherited inherited female 59.0 ... relation 1962.0 NaN Wal-Mart widow NaN http://www.forbes.com/profile/christy-walton/ NaN NaN NaN
1128 2014 Jim Walton 10 United States USA 34.7 inherited inherited male 66.0 ... relation 1962.0 NaN Wal-Mart inherited from father NaN http://www.forbes.com/profile/jim-walton/ NaN NaN NaN

10 rows × 30 columns

Who is the poorest billionaire? Who are the top 10 poorest billionaires?


In [41]:
sortedpoor=rich.sort_values(by='networthusbillion')
sortedpoor.head(10)


Out[41]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... relationshiptocompany foundingdate gdpcurrentus sourceofwealth notes notes2 source source_2 source_3 source_4
234 2014 B.R. Shetty 1565 India IND 1.0 self-made founder non-finance male 72.0 ... founder 1975.0 NaN healthcare NaN NaN http://en.wikipedia.org/wiki/B._R._Shetty http://www.nmchealth.com/dr-br-shetty/ NaN NaN
2092 2014 Rostam Azizi 1565 Tanzania TZA 1.0 self-made executive male 49.0 ... investor 1999.0 NaN telecom, investments NaN NaN http://www.forbes.com/profile/rostam-azizi/ http://en.wikipedia.org/wiki/Vodacom_Tanzania http://www.thecitizen.co.tz/News/Rostam--Dewji... NaN
2401 2014 Tory Burch 1565 United States USA 1.0 self-made founder non-finance female 47.0 ... founder 2004.0 NaN fashion NaN NaN http://en.wikipedia.org/wiki/J._Christopher_Burch http://www.vanityfair.com/news/2007/02/tory-bu... NaN NaN
734 2014 Fred Chang 1565 United States USA 1.0 self-made founder non-finance male 57.0 ... founder 2001.0 NaN online retailing NaN NaN http://en.wikipedia.org/wiki/Newegg http://www.newegg.com/Info/FactSheet.aspx http://www.forbes.com/sites/andreanavarro/2014... NaN
171 2014 Angela Bennett 1565 Australia AUS 1.0 inherited inherited female 69.0 ... relation 1955.0 NaN mining inherited from father shared fortune with brother http://www.forbes.com/profile/angela-bennett/ NaN NaN NaN
748 2014 Fu Kwan 1565 China CHN 1.0 self-made self-made finance male 56.0 ... chairman 1990.0 NaN diversified NaN NaN http://www.forbes.com/profile/fu-kwan/ http://www.macrolink.com.cn/en/AboutBig.aspx NaN NaN
2107 2014 Ryan Kavanaugh 1565 United States USA 1.0 self-made founder non-finance male 39.0 ... founder 2004.0 NaN Movies NaN NaN http://en.wikipedia.org/wiki/Ryan_Kavanaugh http://en.wikipedia.org/wiki/Relativity_Media http://www.vanityfair.com/news/2010/03/kavanau... NaN
1783 2014 O. Francis Biondi 1565 United States USA 1.0 self-made self-made finance male 49.0 ... founder 1995.0 NaN hedge fund NaN NaN http://www.forbes.com/profile/o-francis-biondi/ http://www.forbes.com/sites/nathanvardi/2014/0... NaN NaN
1371 2014 Lam Fong Ngo 1565 Macau MAC 1.0 self-made self-made finance female NaN ... Vice Chairman 1997.0 NaN casinos NaN NaN http://www.forbes.com/profile/david-chow-1/ http://www.macaulegend.com/html/about_mileston... Macau Legend to roll the dice on HK IPO; But l... NaN
702 2014 Feng Hailiang 1565 China CHN 1.0 self-made founder non-finance male 53.0 ... founder 1989.0 NaN copper processing & real estate NaN NaN http://www.forbes.com/profile/feng-hailiang/ http://www.hailiang.com/en/about_int.php NaN NaN

10 rows × 30 columns

'What is relationship to company'? And what are the most common relationships?


In [42]:
rich['relationshiptocompany'].head(5)


Out[42]:
1    former chairman and CEO
5                   relation
6                   relation
8                    founder
9                    founder
Name: relationshiptocompany, dtype: object

It is how the millionaire is related to the company in the industry from which they made the billions.


In [43]:
relations=rich['relationshiptocompany'].value_counts()
relations.head(10) #The problem with the dataset is a little apparent now. 
#CEO and ceo are seen differently. Chairman AND Ceo is one category, either of those are separate categories.
#One can replace ceo with CEO and see how things change.


Out[43]:
founder                                 818
relation                                515
owner                                    79
chairman                                 64
investor                                 30
Chairman and Chief Executive Officer     15
president                                 8
Chairman                                  8
CEO                                       8
ceo                                       8
Name: relationshiptocompany, dtype: int64

In [44]:
rich1=rich.replace(['ceo'],['CEO'])

In [45]:
relations=rich1['relationshiptocompany'].value_counts()
relations.head(10) #The newer version of rich has CEOs merged into one list. So CEO is sixth most common position after investor.


Out[45]:
founder                                 818
relation                                515
owner                                    79
chairman                                 64
investor                                 30
CEO                                      16
Chairman and Chief Executive Officer     15
president                                 8
Chairman                                  8
founder and chairman                      6
Name: relationshiptocompany, dtype: int64

Most common source of wealth? Male vs. female?


In [92]:
source=rich1['sourceofwealth'].value_counts()
source.head(10) #REAL ESTATE IS WHERE THE MONEY IS, GUYS! "Diversified", HAHA!
maleb=rich1[rich1['gender']=='male']
maleb['sourceofwealth'].value_counts()


Out[92]:
real estate                      100
retail                            60
diversified                       60
investments                       58
pharmaceuticals                   40
hedge funds                       34
banking                           30
construction                      27
media                             18
software                          18
private equity                    16
finance                           15
consumer goods                    14
manufacturing                     12
steel                             11
telecom                           10
electronics                        9
mining                             9
education                          8
oil                                8
money management                   8
chemicals                          8
insurance                          8
Facebook                           8
casinos                            7
hotels                             7
beer                               7
beverages                          7
shipping                           7
auto parts                         6
                                ... 
auto import and dealerships        1
Inheritance, oil, real estate      1
record label                       1
movie making                       1
hedge Fund                         1
insurance & real estate            1
insurance, real estate             1
flooring                           1
Netscape, investments              1
Dell                               1
circus, live entertainment         1
drugstore chain                    1
port, gas                          1
sewage treatment                   1
Kyobo Life Insurance               1
banking, shipping                  1
FedEx                              1
Celltrion                          1
inherited, mining                  1
DirecTV                            1
tobacco, banking                   1
employment agency                  1
animation                          1
cement, sugar, flour               1
Wal-Mart, logistics                1
Star Wars                          1
real estate, shipping              1
cars                               1
textiles, apparel                  1
palm oil, real estate              1
Name: sourceofwealth, dtype: int64

In [93]:
femaleb=rich1[rich1['gender']=='female']
femaleb['sourceofwealth'].value_counts()


Out[93]:
diversified                          9
real estate                          7
media                                6
consumer goods                       5
construction                         5
hotels, investments                  5
chemicals                            4
casinos                              4
Wal-Mart                             4
cleaning products                    4
packaging                            3
Samsung                              3
commodities                          3
pipelines                            3
banking                              3
retail                               3
mining                               3
Cargill Inc.                         2
paper                                2
Campbell Soup                        2
inherited, cosmetics                 2
coffee                               2
medical equipment                    2
steel                                2
bank, media                          2
financial services                   2
insurance                            2
pharmaceuticals                      2
hotels, restaurants                  2
publishing                           2
                                    ..
beer                                 1
Prada                                1
self storage                         1
forestry, mining                     1
Facebook                             1
appliance retailer                   1
retailer                             1
Inherited                            1
television                           1
Computer Associates                  1
Dolby Laboratories                   1
construction, investments            1
San Francisco 49ers                  1
hospitals, health care               1
cement firm inheritance              1
Apple, Disney                        1
health IT                            1
H&M                                  1
Gap                                  1
toll roads                           1
gas, petrochemicals                  1
Carnival Cruises                     1
oil & gas, investments               1
art collection, Swatch               1
fashion                              1
mining, banking                      1
roofing                              1
Roche Holding                        1
medical devices                      1
book distribution, transportation    1
Name: sourceofwealth, dtype: int64

In [47]:
rich1['gender'].value_counts() #Inherent Patriarchy perhaps


Out[47]:
male      1473
female     180
Name: gender, dtype: int64

Given the richest person in a country, what % of the GDP is their wealth?


In [48]:
gdp_csv=pd.read_csv('http://data.okfn.org/data/core/gdp/r/gdp.csv')
gdp_2014 = gdp_csv[gdp_csv['Year'] == 2014]
gdp_2014.tail()
gdp_2014=gdp_2014.rename(columns={'Country Code': 'countrycode'})
gdp_2014.tail()
rich2=pd.merge(rich1, gdp_2014, on='countrycode', how='outer')
rich2['percentageofcountrygdptheirwealthis']=(rich2['networthusbillion'])/(rich2['Value'])
rich2['percentageofcountrygdptheirwealthis'].head()


Out[48]:
0    1.492623e-13
1    9.931684e-13
2    6.314943e-14
3    8.037201e-14
4    1.148172e-13
Name: percentageofcountrygdptheirwealthis, dtype: float64

What's the average wealth of a billionaire? Male? Female?


In [94]:
df['networthusbillion'].describe()


Out[94]:
count    1473.000000
mean        3.902716
std         5.801227
min         1.000000
25%         1.400000
50%         2.100000
75%         3.700000
max        76.000000
Name: networthusbillion, dtype: float64

In [95]:
maleb['networthusbillion'].describe()


Out[95]:
count    1473.000000
mean        3.902716
std         5.801227
min         1.000000
25%         1.400000
50%         2.100000
75%         3.700000
max        76.000000
Name: networthusbillion, dtype: float64

In [96]:
femaleb['networthusbillion'].describe()


Out[96]:
count    180.000000
mean       3.920556
std        5.312604
min        1.000000
25%        1.400000
50%        2.300000
75%        3.700000
max       36.700000
Name: networthusbillion, dtype: float64

Add up the wealth of all of the billionaires in a given country (or a few countries) and then compare it to the GDP of the country, or other billionaires, so like pit the US vs India


In [113]:
americanbillionaires=rich2[rich2['countrycode']=='USA']
indianbillionaires=rich2[rich2['countrycode']=='IND']
wealthofamerica=americanbillionaires['networthusbillion'].sum()
wealthofamerica


Out[113]:
2322.3999999999996

In [112]:
wealthofindia=indianbillionaires['networthusbillion'].sum()
wealthofindia


Out[112]:
191.90000000000001

What are the most common industries for billionaires to come from? What's the total amount of billionaire money from each industry?


In [51]:
rich2['industry'].value_counts()


Out[51]:
Consumer                           291
Real Estate                        190
Retail, Restaurant                 174
Diversified financial              132
Technology-Computer                131
Money Management                   122
Media                              104
Energy                              87
Non-consumer industrial             83
Technology-Medical                  78
Mining and metals                   68
Constrution                         61
Other                               59
Hedge funds                         43
Private equity/leveraged buyout     18
0                                    6
Venture Capital                      5
Name: industry, dtype: int64

How many self made billionaires vs. others?


In [52]:
rich2['selfmade'].value_counts()


Out[52]:
self-made    1146
inherited     505
Name: selfmade, dtype: int64

How old are billionaires? How old are billionaires self made vs. non self made? or different industries?


In [58]:
selfmade=rich2[rich2['selfmade']=='self-made']
nonselfmade=rich2[rich2['selfmade']=='inherited']
print("The values for self made billionaires")
selfmade['age'].value_counts()
selfmade['age'].hist()


The values for self made billionaires
Out[58]:
<matplotlib.axes._subplots.AxesSubplot at 0x22b689e3278>

In [56]:
print("The values for non-self made billionaires")
nonselfmade['age'].value_counts()
nonselfmade['age'].hist(label='Self Made Billionaires Age vs Number')


The values for non-self made billionaires
Out[56]:
<matplotlib.axes._subplots.AxesSubplot at 0x22b686ac358>

In [ ]:
rich2['age'].value_counts()

Who are the youngest billionaires? The oldest?


In [61]:
rich2.sort_values(by='age').head(10)


Out[61]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... notes notes2 source source_2 source_3 source_4 Country Name Year Value percentageofcountrygdptheirwealthis
1084 2014.0 Perenna Kei 1284.0 Hong Kong HKG 1.3 inherited inherited female 24.0 ... inherited from father NaN http://en.wikipedia.org/wiki/Perenna_Kei http://www.loganestate.com/en/about.aspx?ftid=294 NaN NaN Hong Kong SAR, China 2014.0 2.908964e+11 4.468945e-12
313 2014.0 Mark Zuckerberg 21.0 United States USA 28.5 self-made founder non-finance male 29.0 ... NaN NaN http://www.forbes.com/profile/mark-zuckerberg/ NaN NaN NaN United States 2014.0 1.741900e+13 1.636144e-12
117 2014.0 Dustin Moskovitz 202.0 United States USA 6.8 self-made founder non-finance male 29.0 ... NaN NaN http://en.wikipedia.org/wiki/Dustin_Moskovitz http://www.forbes.com/profile/dustin-moskovitz/ https://www.facebook.com/facebook/info?tab=pag... NaN United States 2014.0 1.741900e+13 3.903783e-13
976 2014.0 Anton Kathrein, Jr. 1270.0 Germany DEU 1.4 inherited inherited male 29.0 ... 3rd generation NaN http://www.forbes.com/profile/anton-kathrein-jr/# NaN NaN NaN Germany 2014.0 3.852556e+12 3.633951e-13
116 2014.0 Drew Houston 1372.0 United States USA 1.2 self-made founder non-finance male 30.0 ... NaN NaN http://en.wikipedia.org/wiki/Drew_Houston http://en.wikipedia.org/wiki/Dropbox_(service) http://www.forbes.com/profile/drew-houston/ NaN United States 2014.0 1.741900e+13 6.889029e-14
970 2014.0 Albert von Thurn und Taxis 1092.0 Germany DEU 1.6 inherited inherited male 30.0 ... monopoly on postal service in germany, nationa... two older sisters, did not inherit title becau... http://en.wikipedia.org/wiki/Thurn_und_Taxis http://en.wikipedia.org/wiki/Albert,_12th_Prin... NaN NaN Germany 2014.0 3.852556e+12 4.153087e-13
423 2014.0 Scott Duncan 215.0 United States USA 6.3 inherited inherited male 31.0 ... inherited from father NaN http://en.wikipedia.org/wiki/Scott_Duncan_(bus... http://www.forbes.com/profile/dannine-avara/ NaN NaN United States 2014.0 1.741900e+13 3.616740e-13
532 2014.0 Eduardo Saverin 367.0 Brazil BRA 4.1 self-made founder non-finance male 31.0 ... NaN NaN http://en.wikipedia.org/wiki/Eduardo_Saverin http://www.bloomberg.com/news/articles/2012-05... NaN NaN Brazil 2014.0 2.346118e+12 1.747568e-12
1382 2014.0 Yang Huiyan 196.0 China CHN 6.9 inherited inherited female 32.0 ... inherited from father NaN http://en.wikipedia.org/wiki/Yang_Huiyan NaN NaN NaN China 2014.0 1.036011e+13 6.660164e-13
1496 2014.0 Fahd Hariri 1372.0 Lebanon LBN 1.2 inherited inherited male 33.0 ... inherited from father NaN http://en.wikipedia.org/wiki/Rafik_Hariri http://en.wikipedia.org/wiki/Astra_International Hariri son takes up political reins in Lebanon... NaN Lebanon 2014.0 4.573095e+10 2.624044e-11

10 rows × 34 columns


In [63]:
rich2.sort_values(by='age',ascending=False).head(10)


Out[63]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... notes notes2 source source_2 source_3 source_4 Country Name Year Value percentageofcountrygdptheirwealthis
95 2014.0 David Rockefeller, Sr. 580.0 United States USA 2.9 inherited inherited male 98.0 ... family made most of fortune in the late 19th a... NaN http://en.wikipedia.org/wiki/David_Rockefeller http://en.wikipedia.org/wiki/Standard_Oil http://en.wikipedia.org/wiki/Rockefeller_family NaN United States 2014.0 1.741900e+13 1.664849e-13
279 2014.0 Kirk Kerkorian 328.0 United States USA 4.5 self-made self-made finance male 96.0 ... purchased in 1969 NaN http://en.wikipedia.org/wiki/Kirk_Kerkorian http://www.forbes.com/profile/kirk-kerkorian/ PROFILE: Las Vegas billionaire amassed his wea... NaN United States 2014.0 1.741900e+13 2.583386e-13
1612 2014.0 Karl Wlaschek 305.0 Austria AUT 4.8 self-made founder non-finance male 96.0 ... NaN NaN http://en.wikipedia.org/wiki/BILLA http://en.wikipedia.org/wiki/Karl_Wlaschek https://www.billa.at/Footer_Nav_Seiten/Geschic... NaN Austria 2014.0 4.363436e+11 1.100050e-11
170 2014.0 Henry Hillman 687.0 United States USA 2.5 inherited inherited male 95.0 ... inherited from father NaN http://www.forbes.com/profile/henry-hillman/ http://en.wikipedia.org/wiki/Calgon_Carbon NaN NaN United States 2014.0 1.741900e+13 1.435214e-13
994 2014.0 Erika Pohl-Stroher 1154.0 Germany DEU 1.5 inherited inherited female 95.0 ... 3rd generation 23% stake in the company http://www.forbes.com/profile/erika-pohl-stroher/ http://en.wikipedia.org/wiki/Wella NaN NaN Germany 2014.0 3.852556e+12 3.893519e-13
1017 2014.0 Karl Albrecht 23.0 Germany DEU 25.0 self-made executive male 94.0 ... (split from Aldi Nord in 1966, but both branch... took over mother's single grocerty store http://en.wikipedia.org/wiki/Karl_Albrecht http://www.bloomberg.com/news/articles/2014-07... http://aldiuscareers.com/about-aldi/history NaN Germany 2014.0 3.852556e+12 6.489198e-12
509 2014.0 Sulaiman Al Rajhi 931.0 Saudi Arabia SAU 1.9 self-made self-made finance male 94.0 ... NaN NaN http://en.wikipedia.org/wiki/Al-Rajhi_Bank http://www.alrajhibank.com.sa/ar/investor-rela... http://www.alrajhibank.com.sa/ar/about-us/page... NaN Saudi Arabia 2014.0 7.462485e+11 2.546069e-12
19 2014.0 Anne Cox Chambers 58.0 United States USA 15.5 inherited inherited female 94.0 ... inherited from brother NaN http://en.wikipedia.org/wiki/Anne_Cox_Chambers http://www.forbes.com/lists/2010/10/billionair... http://www.nytimes.com/2007/05/30/business/med... NaN United States 2014.0 1.741900e+13 8.898329e-13
495 2014.0 William Moncrief, Jr. 1565.0 United States USA 1.0 inherited inherited male 93.0 ... joined father's business following WWII NaN http://en.wikipedia.org/wiki/William_Moncrief http://www.moncriefoil.com/history.htm NaN NaN United States 2014.0 1.741900e+13 5.740858e-14
840 2014.0 Marcel Adams 1465.0 Canada CAN 1.1 self-made self-made finance male 93.0 ... NaN NaN http://www.forbes.com/profile/marcel-adams/ http://business.financialpost.com/news/93-year... NaN NaN Canada 2014.0 1.786655e+12 6.156756e-13

10 rows × 34 columns

Maybe plot their net worth vs age (scatterplot)


In [66]:
rich2.plot(kind='scatter',x='age',y='networthusbillion')


Out[66]:
<matplotlib.axes._subplots.AxesSubplot at 0x22b68a23dd8>

In [ ]:


In [ ]:


In [ ]: